请选择 进入手机版 | 继续访问电脑版
 找回密码
 注册

QQ登录

只需一步,快速开始

搜索

本文来自

DIY讨论

DIY讨论

人已关注

3D打印机DIY交流

精选帖子

开启左侧

[技术交流] DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十)

  [复制链接]

3D打印机您的个性定制工匠,快来注册找伙伴!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Step 10: Spindle nut housing and build platform support arms
第十步:轴杆螺母外壳和建造平台支撑臂

我们需要设计一系列部件来连接在打印机中央的建造平台与移动的Z轴。

游客,如果您要查看本帖隐藏内容请回复
现在就可以把这些部件组装在一起了。一转眼,一个带滑车导螺杆轴承的Z轴就完成了(其实花了我们两周的时间)。

本帖资料由   版dawnbird \srzxy42译 ,版主 zwltanf 采集。感谢二位为3D打印机DIY 事业的贡献!看来帖子拿了资料不回帖的!诅咒你们!!!树脂买到假货、投影聚焦有畸变还漏光、光源通电就废、电路板一碰就断!!”

DIY爱好者开源全套DLP投影成型技术的3D打印机资料(一)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(二)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(三)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(四)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(五)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(六)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(七)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(八)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(九)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十一)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十二)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十三)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十四)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十五)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十六)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十七)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十八)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(十九)
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(二十)

To bridge the gap between the build platform which will be in the center of the tank and the Z-axis we will need some more parts.
One part, the spindle nut housing to connect the sled (the thingy that slides over the linear guide). A smart connection system so we can easily remove the build platform from the Z-axis. And some angular parts that will reach over the walls of the tank so we can place the build platform on the bottom of the tank when we start printing.

Now put all these parts together and presto (presto took us about two weeks) one Z-axis with sled, lead screw, bearings all complete.

游客,如果您要查看本帖隐藏内容请回复






回复 百度谷歌雅虎搜狗搜搜有道360奇虎

举报

821379 发表于 2013-9-15 16:04:55
Here are a few things to consider in the 3D printer:
I find that making lists like this before every new build really helps me and the people I am working with (it is "we" now) to come up with an effective design that really meets our expectations. This printer will be a prototype, we PLAn to build a cooler, better more advanced version in a later future. Hopefully to be completed at the end of 2013. And if all works out maybe we can even get to a kickstarter. (Dreaming freely here)
The printer must be,not in any specific order:

Affordable.(经济)
Open source.(开源)
Compact.(简洁)
High resolution.(高分辨率)
Compatible with a wide range of materials.(可用材料越多越好)
Easy to use.(易用)
Fast.(快速)
The basic operating procedure:
This is how a Photo Lithographic 3D printer works. Photo Lithography is very simple, light illuminates the resin and the resin hardens.
To be more exact a quantity of light falls/shines onto the resin, if the energy quanta of that light is high enough it will induce photo polymerization of the resin.
First thing is to decide on a light source:
The key part in this is quantity of light energy or Dose, a therm that comes from the world of radiology.
The dose is divided in to three vectors as you will, namely photon energy, light intensity and duration of illumination, together giving the total energy dose. Usually in the UV curing of materials the dose is only measured for a specific part of the spectrum. The rest of the light will usually be reflected or ABSorbed and converted in to heat.
Only photons with a high enough energy will take part in the photo polymerization. This means that the resin that you will be using is the determining factor in the part of the light (electromagnetic) spectrum that we are interested in. Most photo curing resins will cure under the influence of UV light. Light with a wavelength of between 365nm and 420nm.
Some resins also allow for curing with longer wavelengths but these are usually rare and expensive.
1) One of the things to consider is that in order to be able to print with a wide range of resins we would like as much UV in our light as possible. I will explain this in depth when designing the basin, mirror and anti stick coating.
The other part is time of illumination and illumination intensity. The illumination intensity, or luminous flux is the amount of Photons per unit of time that is emitted by the light source.  The longer you illuminate the resin the deeper the light penetrates and the harder and thicker your printed layer gets. This is a very unique feature of stereo lithography where the illumination time is another factor to consider as this determines the build layer thickness.
2) The light source must be of high intensity so the illumination time can be as short as possible allowing for a faster build.
3) An other thing to consider is that the light source needs to be very controllable in switching from illuminating the resin to not illuminating the resin.
In the principle of photo lithography, what gets illuminated polymerizes and what does not get illuminated stays liquid. This means that our resolution or minimum feature size is determined by the minimum spot size.
4) The third parameter for our light source is that it must have the possibility to illuminate a spot that is as small as possible.
Googleing we found that there are two viable light sources/systems that will meet these demands. A blue/UV laser with nice optics to produce a small spot size and a Galvo Head or A DLP projector. A  Lasers are cool but to achieve a small accurate spot with a galvo system felt to us as going way over our heads. Since non of us has any experience in setting up a laser, laser optics and a galvo system. And having the guys from Form 1 as an example (patent issues), maybe one day we would like to offer the world a kit too. We decided to go for the DLP projector option.
There is a whole world of DLP projectors out there.  
A light source passes through a rotating colour wheel and falls on a surface with actuated micro mirrors. These mirrors in synchronization with the colour wheel decide when to either reflect light through the lens or deflect it to somewhere else. Together many micro mirrors form the image.



As from our considerations in the above we can easily state what properties we want our projector to have:
1.high UV content (determines if the projector works to cure the resin)
2.high light intensity (shorter cure time)
3.high contrast ratio (gives a higher resolution with less light contamination)
4.high resolution (results in a smaller feature size)
Last but not least we only have 1000euro's to spend on a beamer. So there is a financial limit too. I realize this is not a small budget for a decent projector, but if the project fails I can always watch a movie on it.
In the end we decided to use an 7077365 Acer H6510BD DLP FHD 1080p, with 1920x1080pixels. Which we ordered at a local store.
Having the light source sorted we can now decide how to use our light source in our 3d printer:
Wait who ho ho stop, yes I know we are just designing a 3D printer but lets do a quick google on resins (photo curing resins). We found that these materials aint cheap. So this cancels the top down approach option. In common stereo lithography the light source illuminates a pool of resin from above. As consecutive layers form the build platform sinks down in to the vat of resin. This means your work piece can only be as high as your basin is deep. This also means that no matter what the size of your build, you must always have a full vat of resin. Meaning that if you want your largest object that you can print to be the size of a shoe, you will need a constant volume of about 3L of resin in your tank. At 80 Euros per litre, there are always 240euros sitting in the tank.
To us this is a bit much. So bottom up it will be.
There are two reasonable configurations when considering a bottom up 3D DLP printer. We can either project directly onto our build area or we can use a mirror to have our projector at an angle in respect to our build area.
We chose to put our projector at a 90 deg angle and use a single surface mirror to project a crisp image on to our build surface.
This because we are aiming for a true desktop machine, something that really fits on our desktop and is as compact as possible.
kuda 发表于 2013-8-31 22:15:47
资源共享 资源类型: 学习资料  
资源版本: -

本帖最后由 dawnbird 于 2013-8-14 13:53 编辑


Step 1: Basic design properties
第1步:基本设计特点


F7MWIZSHJ369CRO_LARGE.jpg (118.61 KB, 下载次数: 486)

下载附件

2013-8-8 13:32 上传

3d打印机中需要注意的事项:
遵循如下几点使我们提出的打印机新构造设计完全符合我们的预期。这台打印机将是一件原型,我们计划在不久的将来建造一个更酷、更完善的版本。有希望在2013末被完成。并且如果所有问题都能解决,我们甚至获得kickstarter资助(译者注:Kickstarter于2009年4月在美国纽约成立,是一个创意方案的众筹网站平台,Kickstarter网站致力于支持和激励创新性、创造性、创意性的活动。通过网络平台面对公众募集小额资金,让有创造力的人有可能获得他们所需要的资金,以便使他们的梦想实现。)(希望如此)
打印机必须具有下面的特点(没有次序之分):
1、经济
2、开源
3、简洁
4、分辨率高
5、可选择材料多
6、操作方便
7、快速


基本操作程序:
光刻成型3d打印机工作流程:过程非常简单,光照射树脂,树脂硬化成型。为了提高成型质量和精度,需要高能光线来照射树脂使其聚合。


首先确定用哪种光源
关键在于光能的定量或者剂量(放射学上的术语)


光剂量你可以用3个参数来衡量,即光能,光强度和照射时间,加起来就是整个光剂量。通常只有光谱中用在固化材料的紫外光被计做光剂量。其余光被反射或吸收转化为热。


只有有足够能量的光子才参与光聚合。这意味着你使用何种树脂是我们决定用哪部分光(电磁)谱的决定因素。大多数光聚合树脂在紫外光下会发生聚合,即波长在365nm到420nm的光。


本帖隐藏的内容
一些树脂也会在更长的波长光照下发生聚合,但是是非常稀少和昂贵的。


1) 需要考虑的事情之一是,为了使用更广范围的树脂材料,我们希望利用尽可能丰富的紫外光频段。
另一方面是照射时间和照射强度。照射强度或者光通量是单位时间光源发出的光子的度量。树脂光照时间越长,光穿透越好,打印层越厚和越硬。光照时间是打印层厚度的另一个因素,这是立体光刻技术的独有特点。


2)光源的强度必须足够强,以使光照时间可以足够短,这样才能达到高速打印。


3)还有光源必须开和关是可控的,以使哪些树脂被光照是可控的。(树脂)在光刻的时候,被光照的发生聚合,没被光照的仍然为液态。也就是说分辨率和最小特征大小取决于最小光点大小。


4)光源的第三个参数是光照点必须越小越好.


在谷歌里搜索我们发现有两个可行的光源系统可以满足这些需求。蓝/紫外激光具有很好的光学性能,能产生一个较小的光斑尺寸和检流计头或数字化光处理投影。激光通过检流计系统获得一个小而精确的光点。由于我们没有设置激光、激光光学和检流计系统的经验。有人从结构1为例(专利问题),也许有一天我们也会弄出一个套件。我们决定采用DLP(数字化光处理)投影。


DLP投影机
光源的光线通过一个旋转的色轮和照到微反射镜的表面。这些镜子通过与色轮同步来实现何时可以反射光线通过透镜或偏离到别的地方。多个微镜形成图像。
从上面的内容来考虑,可以轻易知道我们希望我们的投影机有什么特性:
1.紫外光含量高(确定投影机固化树脂)
2.高光强(固化时间短)
3.对比度高(分辨率高,光污染小)
4.高分辨率(更小的特征尺寸)
最后但并非不重要的,我们只有1000欧元的花在投影仪上。所以存在支出限制。我知道这不是一个高档投影机的的预算,但即使项目失败,我总可以用它来看电影。
最终我们决定使用 7077365 Acer H6510BD DLP FHD 1080p,  1920x1080pixels。我们在当地商店订购的。


有了光源后我们来看如何在3D打印机上使用我们的光源


我知道我们在设计3D打印机,但让我们先对树脂(光固化树脂)进行快速的谷歌搜索,我们发现这些材料不便宜。因此取消了自上向下方法的选择。在通常的立体光刻中光源从上面照射树脂。当工作平台的连续层结构沉入树脂缸中(?),这意味着你的工作段取决于缸的深度。这也意味着,不管你所建模型的大小,你必须使用一整缸树脂(来做)。这意味着如果你想打印鞋,你需要在(树脂)箱中放上约3升树脂。每升80欧元,总共就要放240欧元(树脂)在(材料)箱中.


对我们来说贵了点。所以自下而上试试。


当设计自下而上3D DLP打印机时,有两个合理的设计:我们可以直接投影到工作区域或者我们可以利用镜子在某个角度上反射到工作区域。



我们选择把我们的投影机成90度角,并且用简单平面镜将清晰的图像投影到我们的工作区。
这是因为我们的目标是一种真正的桌面台式机——适合我们的桌面和尽可能紧凑。



懒人王 发表于 2016-7-24 10:34:29
Step 8: Z-axis: spindle and anti back lash nut
Z轴:轴杆与防连续齿隙螺母
DIY爱好者开源全套DLP投影成型技术的3D打印机资料(八)

Z轴:轴杆与防连续齿隙螺母
为什么用这么贵的齿轮?这是因为要确保Z轴上基本准确。即使它们非常贵,我们也还是要用滚珠轴杆和其对应的螺母。其目的就是能有一个更准确的移动轨迹。
本帖隐藏的内容

其他普通的螺母和螺纹最终会产生非常大的位移,这是因为螺母的螺纹比线架的螺纹稍稍大一点,这样可以确保齿轮可以很容易的沿着螺纹走,甚至是脏的螺纹。这样就可以使用毫米级齿距的了。当然你也可以通过软件去补偿一些小的误差。真实的情况就是螺母会在螺纹间有很小的移动。

这个晃动的空间就叫做连续齿隙。当你改变坐标方向的时候,它就很容易被发现了。这个防连续齿隙螺母是有两个单部分和一个固定螺丝组成的。这两个部分的螺纹都是和轴杆是一样的。在它们咬合的地方,螺纹可能会有一些不同,要不紧一点,要不松一点。把这两部分先拧到一起,然后再开始上轴杆,直到你感觉的有阻力了就停下来。再之后慢慢回拧这两个部件,直到整个可以在整个轴杆上活动了。然后把整个螺母拧到大约中间位置。

Here is where it gets a bit trickey?你可能想要确保你的螺丝可以到达固定螺母的位置,甚至在整个打印机中。

现在你需要拧下这个防连续齿隙螺母的部件一点,当你感觉拧下过程中有一些阻力的时候就停下来。确保你不要用太大力就可以让轴杆在螺母活动。当你觉得定位螺母安装可以了,就可以拧紧固定螺丝了。我们是用M3埋头螺丝替换了之前的,所以就不怎么卡了。这就让防连续齿隙螺母在车架上更容易的活动了。

我们是在Damencnc.com上买的梯形螺纹轴杆和两个沟球轴承(6000ZZ 10x26x8mm )如果你没有机床,他们还提供精整加工的服务。
beer-boy 发表于 2013-8-16 19:22:05
每篇顶一下,感谢各位!
wenchelin 发表于 2013-8-23 15:58:31
我还在潜水期,只在看,学习。请允许我多看多学好吗!
apolloz 发表于 2013-8-24 09:09:31
真是厉害,竟能做到这个份上,强!
yunfengren 发表于 2013-8-25 19:30:25
电路部分的资料有没有?
hyh100000 发表于 2013-8-26 18:42:31
好好学习啊!
ses66 发表于 2013-8-26 20:42:45
看看  看看看看看看
好不容易 发表于 2013-8-28 09:38:47
ding.............
上善若水一一 发表于 2013-8-29 15:11:25
顶楼主一下
etli 发表于 2013-8-30 00:40:07

谢谢分享,辛苦了~
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回列表 客服中心 官方QQ群
快速回复 返回顶部 返回列表